Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 196(1): 18-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37097402

RESUMO

Blood sucking parasites not only cause economic loss but also transmit numerous diseases. Dermanyssus gallinae, an obligatory blood feeding ectoparasite causes huge production loss to the poultry industry. Mosquitoes act as vector for transmitting several viral and parasitic diseases in humans. Acaricide resistance limits the control of these parasites. The present study was aimed to control the parasites using chitinase that have selective degradation of chitin, an important component in exoskeleton development. Chitinase was induced in Streptomyces mutabilis IMA8 with chitin extracted from Charybdis smithii. The enzyme showed more than 50% activity at 30-50 °C and the optimum activity at 45 °C. The enzyme activity of chitinase was highest at pH 7.0. The kinetic parameters Km and Vmax values of chitinase were determined by non-linear regression using Michaelis-Menten equation and its derivative Hanes-Wolf plot. The larvicidal effect of different concentrations of chitinase was evaluated against all instar larvae (I-IV) and pupae of An. stephensi and Ae. aegypti after 24 h of exposure. The percentage of mortality was directly proportional to the chitinase concentration. Bioassay for miticidal activity showed that chitinase had excellent miticidal activity (LC50 = 24.2 ppm) against D. gallinae. The present study suggested the usage of Streptomyces mutabilis for preparation of chitinase in mosquito and mite control.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Streptomyces , Humanos , Animais , Inseticidas/farmacologia , Folhas de Planta , Extratos Vegetais/farmacologia , Mosquitos Vetores , Larva , Quitina/farmacologia
2.
Jpn J Infect Dis ; 76(4): 219-225, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-36858600

RESUMO

Influenza A/(H1N1)pdm09 virus evolves through continuous antigenic variation in both surface antigens, such as hemagglutinin (HA) and neuraminidase (NA) proteins, which affect its pathogenicity, the effectiveness of the host immune response, and drug resistance. This study reports the evolution and dynamics of 527 HA protein sequences of influenza A/(H1N1)pdm09 Indian isolates submitted from 2009 to 2020. These isolates were aligned with a reference sequence and 22 sequences representing different clades using MEGA X, and subjected to phylogenetic analysis. The strains were predominantly grouped in clades 6B.1 and 6B.2. Prediction of glycosylation sites using the BioEdit and NetNglyc servers showed 12 glycosylation sites distributed in both the stem and globular head regions of HA. Functional evaluation showed that there were 22 deleterious mutations that could affect the function of HA. In addition, 403 unique mutations were distributed across various isolates, indicating the dynamics of antigenic variation in Indian isolates. These results provide an understanding of the frequency, phylodynamics, and impact of mutations in Indian isolates of influenza A/(H1N1)pdm09 relative to global isolates. Monitoring the genomic evolution of the virus will support studies on strain selection for vaccine development and devising control and prevention measures to manage this respiratory infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Hemaglutininas , Filogenia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Neuraminidase/genética , Evolução Molecular
3.
Colloids Surf B Biointerfaces ; 198: 111475, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33250418

RESUMO

In recent years, nanomaterials have been widely used in consumer products. High reactivity of metallic nanoparticles and its bioaccumulation in biological systems are the main causes of concern over their safety to human health and environment. The available information related to the safety of several nanomaterials is insufficient. Hematite nanoparticles are proposed for various applications. Ecotoxicological studies of hematite nanoparticles are very limited. In the present study, biosynthesised hematite nanoparticles using Bacillus cereus were evaluated for its acute oral toxicity in mice following OECD guidelines. A dose of 2 g/kg/p.o was administered to Swiss albino mice through gastric oral feeding tube and observed for 14 days. After two weeks blood samples were collected and subjected for evaluation of haematological parameters and biochemical analysis. There was no mortality and toxic signs of animals till the end of observational period. The animals were sacrificed and organs like liver and kidneys were isolated to study the histopathological changes. The results of the study revealed that there was no drastic change in parameters except slight change in bilirubin in the hematite nanoparticle treated mice. Biosynthesised hematite nanoparticles were assayed for toxicity in Artemia salina. Cysts treated with higher concentrations of hematite nanoparticles showed small sized nauplii. Biosynthesised hematite nanoparticles were found to be non-toxic to A. salina nauplii in lower concentrations.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nanoestruturas , Animais , Artemia , Bacillus cereus , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas Metálicas/toxicidade , Camundongos
4.
Colloids Surf B Biointerfaces ; 157: 101-109, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28586726

RESUMO

Metal nanoparticles have a great impact and even change the composition of soil microbial communities. This poses the risk of their accumulation in the ecosystem, which may call on health hazard. Statistical techniques such as Plackett-Burman design, Response Surface Methodology were used for optimizing medium constituents for Bacillus cereus SVK1 and other critical variables responsible for the production of biomolecules and biosynthesis of hematite nanoparticles. The effect of hematite nanoparticles on the growth of soil bacteria were tested by agar-well diffusion method and dynamic growth curve techniques. Bacterial growth inhibition was not observed with hematite nanoparticle concentration of up to 25mg/mL. In addition, hematite nanoparticles enhanced the growth of the soil bacteria. The results show that hematite nanoparticles were non-toxic to soil bacteria indicating their scope for wide range of applications. The effective cytotoxic concentration (CTC50) of hematite nanoparticles against MCF-7, A549, Hep3B and Vero cell lines was found to be 207.58, 224.69, 193.26 and 2530µg/mL respectively. Hematite nanoparticles didn't cause lysis of red blood cells.


Assuntos
Bacillus cereus/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Células A549 , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular , Chlorocebus aethiops , Eritrócitos/efeitos dos fármacos , Compostos Férricos/química , Hemólise/efeitos dos fármacos , Humanos , Células MCF-7 , Tamanho da Partícula , Células Vero
5.
J Photochem Photobiol B ; 159: 82-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27045277

RESUMO

Hematite (α-Fe2O3) nanoparticles are widely used in various applications including gas sensors, pigments owing to its low cost, environmental friendliness, non-toxicity and high resistance to corrosion. These nanoparticles were generally synthesized by different chemical methods. In the present study, nanoparticles were synthesized rapidly without heat treatment by biosynthesis approach using culture supernatant of Bacillus cereus SVK1. The physiochemical parameters for rapid synthesis were optimized by using UV-visible spectroscopy. The time taken for hematite nanoparticle synthesis was found to increase with the increasing concentration of the precursor. This might be due to the inadequate proportion of quantity of biomolecules present in the culture supernatant to the precursor which led to delayed bioreduction. Greater quantities of culture supernatant with respect to precursor lead to rapid synthesis of hematite nanoparticles. The nucleation of the hematite nucleus happens more easily when the solution pH was less than 10. The optimum parameters identified for the rapid biosynthesis of hematite nanoparticles were pH9, 37°C (temperature) and 1mM ferric chloride as precursor. The particles were well crystallized hexagonal structured hematite nanoparticles and are predominantly (110)-oriented. The synthesized nanoparticles were found to contain predominantly iron (73.47%) and oxygen (22.58%) as evidenced by Energy Dispersive X-ray analysis. Hematite nanoparticles of 15-40nm diameters were biosynthesized in 48h under optimized conditions, compared to 21days before optimization.


Assuntos
Compostos Férricos/metabolismo , Nanopartículas , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Espectrofotometria Ultravioleta , Temperatura
6.
Int J Biol Macromol ; 74: 376-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25542166

RESUMO

Iron oxide nanoparticles were gaining significant importance in a variety of applications due to its paramagnetic properties and biocompatibility. Various chemical methods were employed for hematite nanoparticle synthesis which require special equipment or a complex production process. In this study, protein capped crystalline hexagonal hematite (α-Fe2O3) nanoparticles were synthesized by green approach using culture supernatant of a newly isolated bacterium, Bacillus cereus SVK1 at ambient conditions. The synthesized nanoparticles were characterized by electron microscopy, X-ray diffraction, UV-visible spectroscopy and Fourier transform infrared spectroscopic analysis. Nanoparticles were evaluated for its possible anticancer activity against HepG2 liver cancer cells by MTT assay. Hematite nanoparticles with an average diameter of 30.2 nm, exhibited a significant cytotoxicity toward HepG2 cells in a concentration-dependent manner (CTC50=704 ng/ml).


Assuntos
Compostos Férricos/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Antineoplásicos/química , Antineoplásicos/toxicidade , Bactérias/metabolismo , Células Hep G2 , Humanos , Nanopartículas Metálicas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...